Exploit Mitigation Techniques

An update after 10 years

Theo de Raadt
The OpenBSD Project

In 2000, OpenBSD started a development initiative to

intentionally make the process memory environment
LESS PREDICTABLE and LESS ROBUST without impacting
well-behaved programs.

It has taken more than 10 years to finish the task.
Most of these ideas are now adopted by other systems.

A status report is needed.

The problem

The concept

The methods
Enabled by default
Adoption by others

Successes and regrets

Agenda

It is always the same story:

“

The clever attacker

.. finds a bug which damages memory (overflow, etc)

.. analyses the unintended side-effects created

(and because of the strict regularity of the system environment)

.. easily crafts an exploit which grants him advantage.

Concept: How can we increase resiliance?

The process memory environment is made up of a mix of
well-defined and undefined behaviours.

How much of the 'undefined’ can we change and have things
still work?

Don’t want to break normal/expected behaviours

But maybe change anything else which makes exploits
hard/impossible?

As long as the performance cost is insignificant / very low..

Methods

Summary of methods

Provide an unpredictable resource base with minimum permissions
random stack gap
program segment mapping randomization
» shared library ASLR, random ordering
» PTE
» mmap ASLR
increase use of .rodata
malloc randomizations

Where it is possible to spot damage, fail hard
stack protector
stackghost

atexit / ctor protection
etc.

Methods: a significant caveat

Any one mechanism (alone) may be insufficient to stop an attack:

People have found ways around ASLR (in isolation)

People have found ways around W”X (in isolation)

SSP does not discover all types of frame damage

Too much address-space randomizaton -> fragmentation
in kernel page management -> performance lost,
feature gets disabled...

No mathematical proof that a collection of these mechanisms
blocks attacks

But that is not same as saying "Don't try"

With those thoughts in mind, we started work and deploying them
in OpenBSD releases.

Most common attacks rely on damage of the local stack frame

The mechanics of a (simple) stack-based buffer overflow

arguments and
environment

Stack
Growth

/
)

Attacker overflows buffer on stack
Note: Buffer is ALWAYS at the
same place

Overflow overwrites function return
address -- fixed value pointer into
overflow buffer - execution starts

Key point: The pointer is an absolute
address.

Solution: a random-sized gap at
top of stack (8-byte aligned)

Random Stack Gap

Before With Stackgap (3 different program executions)
arguments and Q
environment Stackgap \ Stackgap \ -‘.S.t.a.(‘:.ligi?“-.&
SUNUNNNANNNNNNNNNNNY arguments and
arguments atnd \\\\\\\\\d\\\\\\ en%rironment
environmen arguments an
F AIL environment F AIL+
FAIL

l Stack
Growth

)

Growth

Growth

" D

Growth

Wastes at most 1 page of real memory (the gap is virtual)

With a stackgap of 256K, attack feasibility is reduced to

1in 2”(n - paddingrule)

This is a 3-line change to the kernel.

Introducing W™X: A better page permission policy

Many bugs are exploitable because the address space has memory
that is both writeable and executable (permissions = W | X)

this location has to be executable
arguments and .
environment /for’ The EXPIO!T To wor‘k
/ We could make the stack non-executable...
e Hmmmm... how about a generic policy for
it the whole address space:
A page may be either writeable or

executable, but not both (unless the
program specifically requests)

We call this policy W™ X (W xor X)

Let's see how far we can apply it!

WX transition: Introduction to static binaries

| sigtramp

RWX

stack segmen

RWX

1heap

bss segment RW-

| ctors |

dtors

data segment RW-

text segment R-X

null page

This is what static executables
used to look like in memory.

The stack has a piece of executable
called the "signal trampoline"

First problem: The stack is
executable

W*X transition: Sigtramp separation

| sigtramp RWX ,l\

stack segment WX \ stack scgment RV First we move the signal
TS 1 trampoline away from being
the top page of the stack
(to a per-process random address)

The stack becomes non-executable

But perhaps we should look at what
shared libraries do, next..

1 heap 1 heap
bss segment RW- bss segment RW-
| ctors | dtors | ctors | dtors
data segment RW- data segment RW-

text segment R-X text segment R-X

null page null page

W?X Transition: Intro to dynamic binaries

stack segment RW/-

| sistramp BR-X |

1 heap

bss segment RW-

| ctors | dtors
data segment RW-

| plt RWE ot
C [cfors dtors |

text segment R-X

null page

stack segment RW-

[_sigtramp R-X

T heap

bss segment RW-

sot R-

data segment 1
e R

text segment R-X

null page

An example of how shared

1 libraries (used to) map

Note the "data" segments
which are supposed to be
only RW- but contain objects
which are RWX

An additional danger is that
some objects are writeable
when they do not need to

be, ie. GOT/PLT/ctors/dtors

GOT = shared lib Global Offset Table
PLT = shared lib Procedure Linkage Table
ctors = c++ constructors

dtors = c++ destructors

W?X Transition: Applying policy to GOT/ctor/dtors

stack segment RW-

[sigtramp R-X |

t heap

bss segment RW-

sof RW-

plit RWX

data segzﬁgvnt Lctors | dtors |

text segment R-X

null page

stack segment RW-

[sigtramp R-X |

t heap

bss segment RW-

got R-- [ctors !d'tors
plt R-X

data segment RW-

text segment R-X

null page

L ¥

GOT and PLT get their own
pages and become non-writeable
(and we teach Id.so how to cope)

dtors/ctors move in with the
GOT, thus become non-writeable

Now the data segment has no
objects with X permission!

We made a few things
hon-writeable (for free)

No page has both W and X bits!
Policy achieved.

W?X Transition: The .rodata segment

Readonly strings and pointers were stored in the .text segment: X | R

Meaning const data could be executed (could be code an
attacker could use as ROP payload)

Solution: start using the ELF .rodata segment
These objects are now only R, lost their X permission

Greater policy: "minimal set of permissions"

ASLR: randomly map & order libraries

A — Y——
stack segment RW- stack segment RW- stack segment RW- Per' Tur‘b sh are d
[CSigtramp R-X | iz RX | [CistampRX | Iibr‘apy mappi ngs.

Base address ..

| . and order of
mapping.

iesp prear reer On each run,
bss segment RW/- bss segment RW/- bss segment RW/- eaCh I 'br‘ary
cot RV/- sot. RW/- SOt RW-
ot RWE ot W ot RWE has a hew
dat t ctors | dtors dat t ctors | dtors dat t ctors | dtors
mascopgy SR [msepgy SR ey S address
text segment R- text segment R-X text segment R-X
null page null page null page

PIE - Position Independent Executable

g
e
stack segment RV/- stack segment RV/- stack segment RV/-

|_sigtramp R-X |

A compiler change
called PTE makes

the main program
a "shared library"

RUN#1
RUN#2 Then we can map
fres it anywhere
bss segment RW- 1 heap
B E FO R E pgltt)t RWX = bss segment RW-
data segment Letors fdtors | sot RW-
RW- plt RWX -
text segment R-X data saemen | ctors | dtors
e =R On each run,
text segment R-X (
bss segment RW- L_sigtramp R-X | The ma' n program
got RW-
plit RWX

data segment Lctors fdtors |
“RW-

- has a new address
text segment R-X

null page |__nullpage | |_nullpage |

|_sigtramp R-X |

ASLR: Randomized mmap()

Each time you do an allocation using mmap()...
If MAP_FIXED is not specified, choose a random address
Result:

Each time you run a program....

.. different address space behaviour!

ASLR: Randomized malloc()

Did you know that the addresses of objects allocated by
malloc() are fairly predictable?

Two types of objects are managed by malloc()

Smaller than a page:

malloc() maintains buckets of "chunks"
Randomize chunk selection out of bucket
Enabled using /etc/malloc.conf ‘G’ option (still required?)

Equal or greater than a page:

Rely on random mmap()

ASLR: mmap / malloc demo

(lots of details skipped, ie. PIE, shared libraries, €TC)Tiny Cl”OCG'HonS done w”'h
malloc() are randomly allocated
within a "bucket" page
allocations with malloc() over

__ / AAAAA pagesize are simply allocated
- | using mmap()

mmap() gives us "gap pages"
(more on that later..)

stack

mmap —=

; mmap()-allocated memory

malloc()-allocated memory
(page size or greater)

a = malloc()-allocated memory
Before -—— Random mmap — Random malloc (objec"’s £ page in Size)

and random mmap

program

program program

Randomized allocations. .

Of course, each time you run the program the allocations change.

stack

program

program

program

program

" tiny malloc() allocations

rearrange themselves

large malloc() allocations

.— and mmap() allocations

Note: Not showing the effects of many other changes, like
shared library randomization, etc, etc

Other benefits of mmap() malloc()

When you free() an object >= pagesize

it gets unmapped using munmap()

Therefore, access after free() becomes a detectable crash

Detecting buffer overflow, over'read"

If you try to read/write beyond the end of an object,
maybe there is a guard page there?

Future goals

Be more proactive with placing allocations next to guards

Or using "padding" guards

malloc() ... UNFORTUNATELY

Unfortunately much software is written to very low standards

The more of these features we enable, the more bugs we run into

malloc.conf ‘G’ option:
"Guard". Enable guard pages and chunk randomization. Each

page size or larger allocation is followed by a guard page that
will cause a segmentation fault upon any access. Smaller than
page size chunks are returned in a random order.

A few malloc features cannot be enabled by default yet

Stack Protector

Compiler modification which catches most common stack-smashing
problems

Original: http://www.trl.ibm.com/projects/security/ssp/

Compiler instruments generated code for each function:
Prologue stores a random value (canary) on the stack
Function Epilogue aborts if value has changed

Integrated into OpenBSD in December 2002

Industry (mostly Google) now making further enhancements

Stack Protector

arguments... A typical stack frame...

ﬁemm — 1 Random value is inserted here by function
saved frame pointer j pr‘ologue
7 ... and checked by function epilogue

local arrays

S Reordering: Arrays (strings) placed closer
Rl to random value -- integers and pointers
e placed further away

-fstack-protector-all compiled system is 1.3% slower at make build

BENEFITS SECURITY: Finds bugs and makes them unexploitable

VERY LOW COST: Every vendor should use it

StackGhost

A sparc/sparcé4-specific buffer overflow protection mechanism
stackghost.cerias.purdue.edu/stackghost.pdf

These register-window architectures have backup-storage for the
registers (reserved in each stack frame)

StackGhost is a scheme where the register-window SPILL/FILL
trap handlers XOR the frame-pointer register (%i7) with a
per-process random cookie ("wcookie")

Protects registers from modification while they reside in the
stack frame (%i7 itself, or the next frame it points to...)

Like a weak Stack Protector... but zero cycle overhead.

W*X and IW: atexit() in libc

Introducing a case of minimum page permission use in libc

void exit(int status)

{
struct atexit *p; int n;
for (p = __atexit; p; p = p->next)
for (n = p->ind; --n>= 0;)
(*p->fns[n])0):
if (__cleanup)
(*__cleanup)();
_exit(status);
}

__atexit and __cleanup contain writeable function pointers!

We modified atexit(3) to maintain function pointer storage
which is kept non-writeable

Confused yet?

Are you confused yet by all the layers of obfuscation?
The attacker is!

These changes combine to make exploitation very difficult.

MHN#

Enabled by default

Strategy: as soon as something works... enable it and get everyone
to use it!

Then: show upstream software projects the bugs we expose, and
help verify the repairs they make

Only had to downgrade the aggressiveness once or twice:

A few revisions of ASLR (too greedy with address space)
malloc guarding (world is not ready for this)

Currently these methods do not restrict us from running any
upstream sof tware

Adoption: Most vendors

Microsoft has all significant mitigations fully integrated and enabled!!

Linux has code for all the mitigations. Most vendors enable them very
sparingly (sshd), and in general support is disabled... :~(

Apple has ASLR (but not the other methods?)

Most Cell-phone platforms use these features, but less protection
benefit (thread-intensive environments)

The upstream software ecosystem (ports) is ready and willing.

Adoption: FreeBSD

from wiki.freebsd.org/201309DevSummit
* Included in 10, but off by default:

- stackgap randomization adds a random amount of
empty space at the top of the stack

- mmap randomization inserts a random gap between
consecutive mappings

» Stack protection can now be enabled by default
(but hasn't yet) after libc changes

e |dbase randomization discussed, but not
Implemented

Adoption: FreeBSD

from wiki.freebsd.org/201309DevSummit

* Included in 10, but off bx default:

- stackgap randomization adds a random amount of
empty space at the top of the stack

- mmap randomization inserts a random gap between
consecutive mappings

« Stack protection can now be enabled by default
(but hasn't yet) after libc changes

e |dbase randomization discussed, but not
implemented

Adoption: FreeBSD

from wiki.freebsd.org/201309DevSummit

* Included in 10, but off bx default:

- stackgap randomization adds a random amount of
empty space at the top of the stack

- mmap randomization inserts a random gap between
consecutive mappings

« Stack protection can now be enabled by default

(but hasn't yet) after libc changes

e |dbase randomization discussed, but not
implemented

Adoption: FreeBSD

from wiki.freebsd.org/201309DevSummit

* Included in 10, but off bx default:

- stackgap randomization adds a random amount of
empty space at the top of the stack

- mmap randomization inserts a random gap between
consecutive mappings

« Stack protection can now be enabled by default
(but hasn't yet) after libc changes

“

e |[dbase randomization discussed, but not

imEIemented .

How can people go around saying FreeBSD is secure?

Summary

Low or non-existant performance hit -- all programs continue working
Exploitable problems have been found and fixed by our changes
Thousands of non-exploitable bugs were fixed also

These changes really stop attacks.

10 years: Wish more systems had adopted more of the features

